A joint approach to optimize resource and energy efficiency while ensuring patient safety

From regulatory standpoint, sterilisation at 121°C is preferred. Can BFS bottles stand it still meeting end use requirements?

Figure 1 Decision tree for sterilisation choices for aqueous products

When moving down the decision trees, the methods generally show a decreasing assurance of sterility and therefore, the first feasible option should normally be chosen.*

* From 'Guideline on sterilisation of the medicinal product, active substance, excipient and primary container EMA/CHMP/CVMP/QWP/850374/2015

A multitude of needs to be studied require a collaborative approach

→ Borealis innovative raw material solution: BormedTM SB815MO

Borealis at a glance

(IJ

Borealis Polyolefins are indispensable in many segments of the economy

Dedicated service for the Healthcare Industry: the Bormed[™] concept

- Long-term supply
- Step change innovation
- Planning prioritisation
- Value chain partnerships

Change control procedure
Consistency
Regulatory compliance
Enhanced operating instructions

Information management

SERVICE

- Proactive notifications
- Dedicated team of experienced specialists
- Global support

The diversity of Healthcare applications Bormed[™] serves

BFS market volume*

Blow-Fill-Seal Market Volume (2015-2025, Global)

*Regulated Polyolefins in Healthcare Applications – Frost&Sulivan 2016

→ Bormed[™] for BFS Material Solutions

Regardless of what material you need, Borealis aims to be the supplier of choice through our complete portfolio offering

	Bormed LDPE	Bormed HDPE	Bormed Semi-soft PP	Bormed Soft PP
100 mm	LE6600-PH	HE2581-PH	RB801CF	SB815MO
William -	LE6607-PH			
	LE6609-PH			

	LDPE	HDPE	RB801CF	SB815MO
Processability	+	+	+	+
Ph.Eur compliance	+	+	+	+
Transparency	+	-	++	+
Sterilisation at 121°C	-	+	+	+
Low Stiffness (Flex) => Collapsibility	+		-	+

→ Bormed[™] SB815MO for Blow-Fill-Seal (BFS) applications

→ Bormed[™] SB815MO design offers best possible optical properties...

• ... which match the optics of a LDPE

*BAF = (Clarity x Gloss) / Haze

... complemented by softness and enhanced toughness!

Bormed[™] has full Pharmacopeia compliance (EP, USP, ISO10993, DMF listing)

A multitude of needs to be studied require a collaborative approach

Literature outlines weakness of PP bottle packaging

Literature

Pharmaceutical Development and Technology, 2010; 15(1): 6-34

Review of sterile packaging systems 23

EVA
ylene) (Ethylene vinyl acetate)
Fair
Very poor
Very poor
Fair
Good
Fair
Y

Table 6. Comparative properties of major plastic polymers.[39,75,84]

Research and Development, Baxter BioPharma Solutions, Bloomington, Indiana, USA

Gregory A. Sacha, Wendy Saffell-Clemmer, Karen Abram & Michael J. Akers Journal Pharmaceutical Development and Technology Volume 15, 2010 - Issue 1 Practical fundamentals of glass, rubber, and plastic sterile packaging systems

() ROMMELAG SYNTEGEN BOREALIS BOREALIS

Three LDPE and the new soft PP have been tested

Overview

No		Trial no.	Material	Manufactu- ring process	Density [g/cm ³]	MFI [g/10min] (2,16kg/190°C LDPE) (2,16kg/230°C PP)	Tensile Modulus [MPa]
1	LDPE	PE07-S-275	LE6607-PH (Schwechat)	tubular	0,927	0,3	300
3	LDPE	PE07-P-275	LE6607-PH (Porvoo)	autoclave	0,927	0,3	300
2	LDPE	PE09-S-275	LE6609-PH (Schwechat)	tubular	0,930	0,3	350
4	PP	PP815-B-275	SB815MO (Burghausen)	-	0,9	0,3	475

BFS Processing shows only minimal differences between the LDPEs; PP needs special attention

Comparison

No	Polymer	Polymer Type	Extrusion	Process window	Cooling time	Punching system	Pins for transport	Power of extruder motor	Cutting edge	Vacuum slits
1	LDPE	LE6607-PH tubular (Schwechat)	+	+	+	Internal	Standard	medium	wide	Large
2	LDPE	LE6607-PH autoclave (Porvoo)	Additional shear part recommended	+	+	Internal	Standard	medium	wide	Large
3	LDPE	LE6609-PH tubular (Schwechat)	+	+	+	Internal	Standard	medium	wide	Large
4	PP	SB815MO (Burghausen)	0	-	longer	External	PP specific	high	small	small

(المعرفة ROMMELAG SYNTEGEN | Borealls Borouge

Typical oval standard bottles were tested for administration performance

•	Nominal volume:	250 ml
•	Filling volume:	275 ml
•	Filled product:	demineralized water
•	Bottle weight empty:	18.5 g
•	Condition:	autoclaved
•	Production date:	Mav 2017

VZ: 2554h

Rommelag's standard test protocols was applied for performance tests

- Caps: West Insocap
- Determine bottle weight before and after testing → residual weight
- Pre-filled infusion tube
- H = 775 mm
- data recording with balance (1 value / s)
- 1 g = 1 ml (ρ_{water} = 1 g/cm³)
- Flowrate [ml/s] = $\frac{\Delta V [ml]}{\Delta t [s]}$

The soft PP bottles emptying performance is very similar to the LDPE Emptying Results

No	material	bottle weight, filled with cap [g]	residual weight [g]	empty weight with cap [g]	empty weight, without cap [g]	filling volume [ml]	emptyed volume [ml]	emptyed volume [%]	residual volume [ml]
1	LE6607-PH (Schwechat)	297,4	29,2	22,5	18,5	274,9	268,3	97,6%	6,6
2	LE 6607-PH (Porvoo)	296,3	29,4	22,6	18,5	273,8	267,0	97,5%	<mark>6,</mark> 8
3	LE6609-PH (Schwechat)	296,3	28,7	22,4	18,4	273,9	267,7	97,7%	6,2
4	SB815MO	295,9	28,8	22,4	18,6	273,5	267,1	97,7%	6,4

22 BFS IOA Asheville - October 2019

() ROMMELAG SYNTEGEN | BOREALIS Borouge

Rommelag's standard test protocols was applied for piercing tests

ISO Piercing pin shaft transition spike

-2- Piercing

- Force gauge:
 - Norm:
 - Material:
 - Test conditions:

- Mecmesin MultiTest 10-i
- DIN EN ISO 15747:2017-08
- stainless steel (1.4301)

speed = 500 mm/min cleaning with acetone

Piercing position

- No cap using
- Measuring the membrane thickness at the piercing positions

23 BFS IOA Asheville - October 2019

The force-displacement diagram shows the typical effects during pin insertion

The maximum piercing forces correlate to the membrane thickness

Bars: max/min

- Summary

- 1. The different LDPE polymers behave almost similar.
- 2. BFS processing of soft PP needs special attention.
- 3. Bottle performance data (emptying & piercing) are within a similar range.

A multitude of needs to be studied require a collaborative approach

SBM Schoeller-Bleckmann Medizintechnik GmbH a Syntegon company

► Freeze drying

- Production of small batches for clinical trials, as well as for medium production batches
- Harmonized interfaces for upstream and downstream line components

- Sterilization processes
- Highly sophisticated tailor made sterilizers
- Machinery for terminal product sterilization
- Machinery for equipment sterilization

Secondary packaging

SBM Study 1000ml BFS containers → Joint contribution SBM – Rommelag - Borealis

Borealis – different standard resins

Standard Resin	Production site	PE/PP	Melting Point
LE6607-PH	1130021150 Schwechat	PE	114°C
LE6607-PH	186948 Porvoo	PE	114°C
LE6609-PH	1130019750 Schwechat	PE	117°C
SB815MO	3220003139 Burghausen	PP	145°C

Rommelag – bottles with different fill grades

- ▶ 900 ml
- ▶ 1000 ml
- ► 1100 ml

SBM – sterilization test runs @ test lab AUSTRIA

- Different temperatures as close as possible to melting point
- Different loading pattern
- ► Different **positions** in 3 layers to evaluate influences
- Cycle control via reference sensors / BFS Bottle

SBM Study 1000ml BFS containers → Test setup for the sterilization

- ► Sterilization method: Hot water spray process / DIN 58959-1
- ► Water distribution by **distribution plates** on top of the chamber
- ► Loading capacity: 3 trays, 18 bottles each
- Loading pattern: 2 different industry standards Bottles with direct contact / Separation boxes
- Loading distribution trays: Each color of the bottle reflects one fill grade with the same type and plastic
- Cycle control: Two separate boxes in lowest layer with reference temperature probes

SBM Study 1000ml BFS containers → Test setup for the sterilization

Different filling grades before sterilization – reference bottle 1000 ml

Reference bottle (4.0) - not sterilized
4.0 – 1/2 and 4.0 – 1/2/B - sterilized

Source: Syntegon project team | BFS IOA Asheville – October 2019

SBM Study 1000ml BFS containers → Results PP SB815MO with 121°C and 130°C (MP 145°C)

Sterilization @ 121°C (20 minutes fixed to stress the material):

- ▶ 1000 mI and 1100 mI shape OK, little dents on the wider sides
- ▶ 900 ml with stronger denting on wider sides,
- ► No difference in layer / no difference to single box position
- ▶ Bottles shrinked ~ 2-3mm
- ► PP SB815MO less sensitive vs. PE

from sterilization point of view

Sterilization @ 130°C (20 minutes fixed):

- ► All bottles show deformations, single box looks better
- ▶ Bottles shrinked ~2-3mm
- For test purpose only, 130 for 20 min. / ($F_0 = 200$)

General recommendation based on F0=15: 121°C for 10-12 min.

Source: Syntegon project team | BFS IOA Asheville – October 2019

SBM Study 1000ml BFS containers → Results for PE LE6607-PH (SW) with 109/110,5/112 and 113,5°C

Sterilization @ 109°C (MP 114°C, target F0=8)

► No significant difference in layer, no difference direct vs. single box

Sterilization @ 110,5°C (MP 114°C, target F0=8)

No significant difference in layer, better shape/standing in single box All bottles show slight distortion

Sterilization @ 112°C (MP 114°C, target F0=8)

- ► All sizes more blown up on bottom, first dents in shoulder area
- ► No significant difference in layer, **much better shape in single box**

With optimized cycle parameters and single boxes difficult but feasible!

Sterilization @ 113,5°C (MP 114°C, target F0=8)

- ► All bottles show **strong deformations** and dents
- No significant difference in layer, better shape in single box, outside box bottles partly stuck/melted together

109°C

112°C.

SBM Study 1000ml BFS containers → Results for PE LE6607-PH (PO) – 109 / 110,5 / 112 and 113,5°C

Sterilization @ 109°C (MP 114°C, target F0=8)

► No significant difference in layer, 900ml shape improved in single box

Sterilization @ 110,5°C (MP 114°C, target F0=8)

No significant difference in layer, improvement in shape and standing in single box, 900ml again worst shape.

Sterilization @ 112°C (MP 114°C, target F0=8)

109°C

112°C

- ► All sizes show more dents and 900ml first deformations
- No significant difference in layer, much better shape in single box

More sensitive than SW production but with optimized cycle parameters and single boxes feasible!

Sterilization @ 113,5°C (MP 114°C, target F0=8)

All bottles show strong deformations and dents, partly stuck/melted together – not recommended

109°C

SBM Study 1000ml BFS containers → Results for PE LE6609-PH (SW) with 112 and 113,5°C

Sterilization @ 112°C (MP 117°C, target F0=8)

- ▶ Bottle shape very nice, tends to blow up (less in 900ml)
- ► No significant difference in layer and single box

Sterilization @ 113,5°C (MP 117°C, target F0=8)

- All with very nice shape, few small dents on the shoulders more with 900ml
- ► No significant difference in layer, shape better in single box
- With optimized cycle parameters and single boxes difficult but feasible!

115°C dismissed, strong deformations and dents not recommendable

112°C

- → SBM Study 1000ml BFS containers
 → Summary Main Parameters
 - ► Sterilization temperature
 - Control of counter pressure especially during heating and cooling phase
 - Fill grade of the bottle (air to liquid ratio)
 - ► Shape of the bottle after BFS machine
 - ► Wall thickness of the bottles
 - Loading configuration direct contact vs. separation boxes
 - Physical characteristics of the plastic, esp. MP

→ SBM Study 1000ml BFS containers → Summary – Sterilization Temperature

Sterilization Temperature

- ► Sterilization @ 5°C below melting point of the plastic
 - \implies Safe operation, no significant difference in shape of all bottles
- Sterilization @ temperature closer to the MP

The closer the temperature to the MP – the higher the relevance of other parameters

- Loading in **single boxes improves the shape** of the bottle
- Less air in the bottle (e.g. 1100ml) reduces dents in shoulder area but requires higher counter pressure
- Higher requirement for tray loading (manual or automatic loading) to assure straight standing on the trays.
- ► Higher requirements on sterilization process control and process development

Sterilization temperature 3°C below melting point achievable with optimized setting of BFS machine and Sterilizer (with PP max. 123°C is sufficient for very short cycle)

SBM Study 1000ml BFS containers → Summary: Capacity Example

TOTAL OUTPUT p.a.	[pcs]	17.300.000	26.000.000	34.700.000	0 10	108 110 112 114 116 118 120
Cycles per year **)		2 040	3 060	4 080	20	
Cycles per day $^{*)}$		6	9	12	40	
Bottles per batch	[pcs]	8 500	8 500	8 500	60	
TOTAL Cycle time		200	135	100	80	
Sterilization	[min]	130	65	20	100	
Heating / Cooling	[min]	55	55	65	120	
Loading / Unloading	[min]	15	15	15	140	
Sterilization temperature		109 °C	112 °C	121 °C		Sterilization time @ different temperatures: $F_0 = 8$

Higher sterilization temperature

50%

- 100%
- \Rightarrow shorter cycle time
- \Rightarrow higher output or
- \Rightarrow smaller autoclaves

122

A multitude of needs to be studied require a collaborative approach

SBM Study 1000ml BFS containers → Summary: media consumption effect / batch

Sterilization temperature		109 °C	112 °C	121 °C		Sterilization time @ different temperatures: $F_0 = 8$
Loading / Unloading	[min]	15	15	15	140	◄
Heating / Cooling	[min]	55	55	65	120 -	
Sterilization	[min]	130	65	20	100	
TOTAL Cycle time		200	135	100	80	
Bottles per batch	[pcs]	8 500	8 500	8 500	60	
Cycles per day ^{*)}		6	9	12	40	
Cycles per year **)		2 040	3 060	4 080	20 -	
TOTAL OUTPUT p.a.	[pcs]	17.300.000	26.000.000	34.700.000	0 108	8 110 112 114 116 118 120 122

Media consumption 109°C vs 121°C: (driven by longer heating and cooling phase but shorter total time)

- \Rightarrow steam for heating +12% \uparrow
- \Rightarrow cooling water + 14%
- \Rightarrow electricity -30%

From TCO point of view, cost/bottle will be less!

Source: Syntegon project team | BFS IOA Asheville – October 2019